

产品描述

我们的光纤强度调制器采用退火质子交换 (APE) 工艺制造,采用零啁啾设计和 保偏(PM)光纤输出。

产品特点

- 低插入损耗
- 低驱动电压
- 低背光反射
- 包装尺寸小、重量轻 良好的长期稳定性

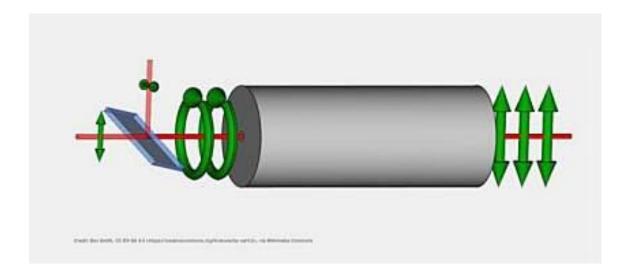
应用领域

- RF-Over-Fiber (RFOF) 和微波光子学
- 高速电信
- WDM 传输

通用参数

强度调制器规格

短皮洞刺奋双格	LIM 1550 A DA	LIM-1550-B-PA	LIM-1550-C-PA	LIM 1550 D DA
Item #	LIM-1550-A-PA			LIM-1550-D-PA
工作波长	1525nm- 1605 nm	1525nm - 1605 nm	1525nm-1605n m	1525nm-1605n m
光学插入损耗	≤5.0dB (4.0 dB	≤5.0dB (4.0dB T	·	≤5.0 dB (4.0 d
	Тур.)	yp.)	Тур.)	В Тур.)
光回波损耗	≥40dB	≥40 dB	≥40 dB	≥55dB
消光比(@ DC)	≥20dB	≥20 dB	≥20 dB	≥20 dB
输入功率	≤100mW	≤100 mW	≤100 mW	≤100 mW
E/O 带宽(-3 分贝)	≥2.5GHz(3 GHz Typ.)	≥10 GHz (14 G Hz Typ.)	≥20 GHz (21 G Hz Typ.)	≥40GHz (42GHz Typ.)
操作频率范围	10MHZ to 2.5G Hz(Min)	10MHZ to 10 G Hz(Min)	10MHZ to 20G Hz(Min)	10MHZ to 40G Hz(Min)
射频 Vπ (@ 1 GHz)	≤5V(3.5V Typ.)	≤6.5V (5.6 V Ty p.)	≤6.5 V (5.2 V T yp.)	≤5V (3.5V Typ.)
射频 Vπ (@ 20 GHz)	-	-	-	-
直流偏置 Vπ (@) 1 kHz)	≤10.0 V (6.5 V Typ.)	≤10.0 V (6.5 V Typ.)	≤3.0 V (2.7 V T yp.)b	≤10.0 V (6.5 V Typ.)
S11	10MHZ to 2.5 GHz	10MHZ to 10 G Hz	10MHZ to 20 G Hz	10MHZ to 40 G Hz
射频输入功率				
反向偏置电压	-5.5 V to -3.0 V			
响应	0.1 mA/mW to 0.5 mA/mW			
输出光功率监控范围	-5 dBm to 10 dBm			
射频连接	Male SMP (GPO®† Compatible), Full Detent			
光纤类型	Input: PANDA Polarization Maintaining Output: SMF-28®‡ Single Mo de			
光纤长度	1.5 m Typ.			
环境				
工作外壳温度	0 °C - 70 °C			
存储温度	-40 °C - 85 °C			

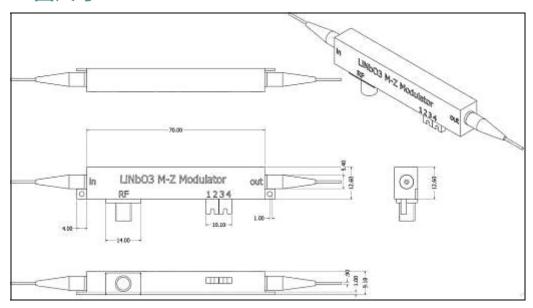


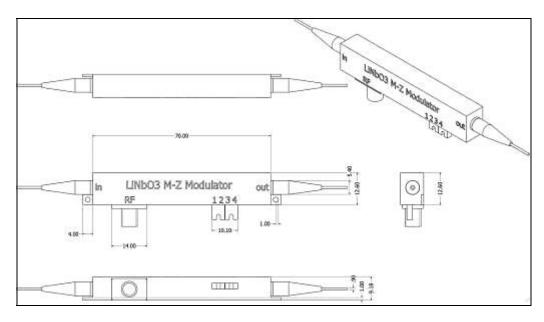
这些调制器设计用于指出波长。在其他波长上使用调制器可能会导致光损耗增加,这不在保修范围内。在 某些情况下,这种损失可能是暂时的;例如,通常由将调制器加热到 80°C 一小时来逆转由较短波长引起 的损耗增加。

LIM-1550-B-PA 包括一个偏置电路,可将直流偏置耦合到 RF 驱动电极上。根据应用的不同,RF 输入 端可能需要一个外部 DC 模块。

什么是普克尔效应?

我们的相位和振幅调制器都基于普克尔效应: 电光效应, 其中沿一个或多个轴的折射率与外部施加的电场 成正比。因此,通过在电光晶体的电极上施加电压,我们可以在光穿过晶体时改变光的相位。通过将晶体 放置在交叉偏振器之间,这种相位调制可以转换为幅度调制。

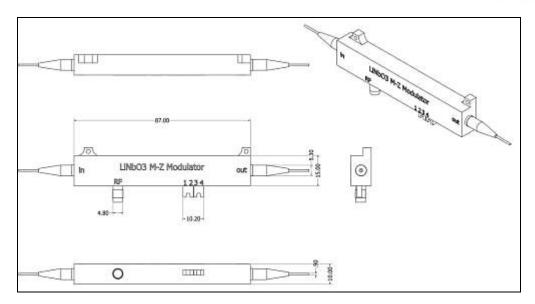

LiNbO3 调制器的 Max. 额定值			
光輸入功率	100mw		
输入 射频 功率	27dB		
工作温度范围	0°C-70°C		
存储温度范围	-40°C-85°C		

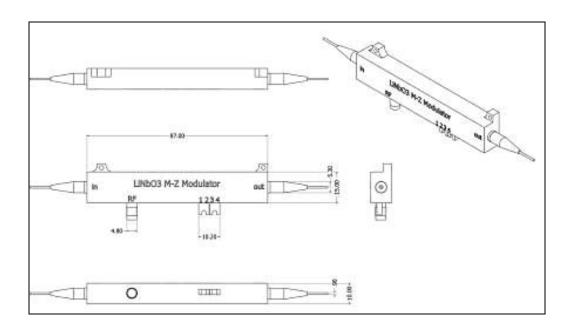


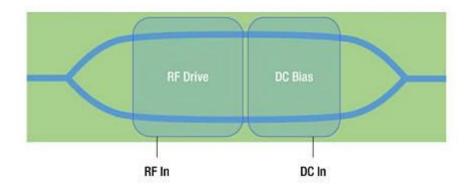
PIN 图尺寸

2.5Ghz LiNbO3 MZ 调制器

10Ghz LiNbO3 MZ 调制器






20Ghz LiNbO3 MZ 调制器

40Ghz LiNbO3 MZ 调制器

S21 测试图

型号及订购

 $LIM\text{----} \div XX$

0000: 波长

1310: 1310nm

1550: 1550 纳米

☆ : 调制带宽

A: > 2.5GHZ

B: > 10GHZ

C: > 20GHZ

D: > 40GHZ

XX: 光纤和连接器类型

SA=SMF-28E+ FC/APC

SP=SMF-28E+ FC/PC

PP=PM Fiber+ FC/PC

PA=PM Fiber+ FC/APC

